Artificial Analysis 重磅发布《2025年Q2中国AI现状报告》:中国与美国差距已从一年缩短至3个月
Artificial Analysis 重磅发布《2025年Q2中国AI现状报告》:中国与美国差距已从一年缩短至3个月Artificial Analysis 最近发布了《State of AI: China Q2 2025 Highlights Report》(2025年Q2 中国人工智能现状分析报告),聚焦中国 AI 发展现状。
Artificial Analysis 最近发布了《State of AI: China Q2 2025 Highlights Report》(2025年Q2 中国人工智能现状分析报告),聚焦中国 AI 发展现状。
近年来,大语言模型(LLM)已展现出卓越的通用能力,但其核心仍是静态的。面对日新月异的任务、知识领域和交互环境,模型无法实时调整其内部参数,这一根本性瓶颈日益凸显。
在今年三月份,清华 AIR 和字节联合 SIA Lab 发布了 DAPO,即 Decoupled Clip and Dynamic sAmpling Policy Optimization(解耦剪辑和动态采样策略优化)。
面对对抗攻击,具身智能体除了被动防范,也能主动出击! 在人类视觉系统启发下,清华朱军团队在TPMAI 2025中提出了强化学习驱动的主动防御框架REIN-EAD。
长久以来我们都知道在Prompt里塞几个好例子能让LLM表现得更好,这就像教小孩学东西前先给他做个示范。在Vibe coding爆火后,和各种代码生成模型打交道的人变得更多了,大家也一定用过上下文学习(In-Context Learning, ICL)或者检索增强生成(RAG)这类技术来提升它的表现。
3D生成的行业新标杆,这一次由国产玩家树立。 万万没想到,这样一个堪比游戏全景视角的场景,竟然只由一张图片生成?!
AI搜索大战,已经白热化!最新QuestMobile报告揭晓:夸克月人均使用次数稳居第一,微博智搜凭DeepSeek杀进前二,腾讯「新闻妹」拿到第三。实测发现,天气预警、社会新闻、数码测评、娱乐八卦,微博智搜统统一键梳理,让网友搜索体验爽到飞起。
上海人工智能实验室等团队提出Lumina-mGPT 2.0 —— 一款独立的、仅使用解码器的自回归模型,统一了包括文生图、图像对生成、主体驱动生成、多轮图像编辑、可控生成和密集预测在内的广泛任务。
AI设计出人类看不懂的实验,却成功破解物理学数十年难题,大幅提升LIGO灵敏度。寻找暗物质,解读宇宙公式都不在话下,AI辅助物理学发现的新时代已经到来。
近年来,扩散模型在图像与视频合成领域展现出前所未有的生成能力,为人脸生成与编辑技术按下了加速键。特别是一张静态人脸驱动任意表情、姿态乃至光照的梦想,正在走向大众工具箱,并在三大场景展现巨大潜力
「一只手有几根手指?」 这个看似简单的问题,强如 GPT-5 却并不能总是答对。 今天,CMU 博士生、英伟达 GEAR(通用具身智能体研究)团队成员 Tairan He(何泰然)向 GPT-5 询问了这个问题,结果模型回答错了。
4D 空间智能重建是计算机视觉领域的核心挑战,其目标在于从视觉数据中还原三维空间的动态演化过程。这一技术通过整合静态场景结构与时空动态变化,构建出具有时间维度的空间表征系统,在虚拟现实、数字孪生和智能交互等领域展现出关键价值。
近年来,文生图模型(Text-to-Image Models)飞速发展,从早期的 GAN 架构到如今的扩散和自回归模型,生成图像的质量和细节表现力实现了跨越式提升。这些模型大大降低了高质量图像创作的门槛,为设计、教育、艺术创作等领域带来了前所未有的便利。
稀疏激活的混合专家模型(MoE)通过动态路由和稀疏激活机制,极大提升了大语言模型(LLM)的学习能力,展现出显著的潜力。基于这一架构,涌现出了如 DeepSeek、Qwen 等先进的 MoE LLM。
在「用进废退」原则的驱动下,拇指逐渐变长且肌肉发达,能够与其他手指精准对握,实现精细操作。手部由多个关节组成,具有高度灵活性,可完成捏、握、夹等多种动作。此外,手部皮肤富含触觉感受器,能够感知压力、温度和纹理等信息,为操作提供精准反馈。
在图像生成领域,自回归(Autoregressive, AR)模型与扩散(Diffusion)模型之间的技术路线之争始终未曾停歇。大语言模型(LLM)凭借其基于「预测下一个词元」的优雅范式,已在文本生成领域奠定了不可撼动的地位。
蛋白质模型的GPT时刻来了! 清华大学智能产业研究院(AIR)周浩副教授课题组联合上海人工智能实验室发布了AMix-1: 首次以Scaling Law、Emergent Ability、In-Context Learning和Test-time Scaling的系统化方法论来构建蛋白质基座模型。
每次打开导航的,导航软件在一秒内给出一个最速路线的时候,你有没有好奇过它是怎么找到这条路的? 假如不考虑堵车、红绿灯等交通影响因素,仅找到一条最短最快的路线,那不论如何也逃不掉 Dijkstra 算法。
GenSeg用AI生成高质量医学图像及对应分割标注,在仅有几十张样本时也能训练出媲美传统深度模型的分割系统,显著降低医生手工标注负担。
27M小模型超越o3-mini-high和DeepSeek-R1!推理还不靠思维链。 开发者是那位拒绝了马斯克、还要挑战Transformer的00后清华校友,Sapient Intelligence的创始人王冠。
在可验证强化学习(RLVR)的推动下,大语言模型在单轮推理任务中已展现出不俗表现。然而在真实推理场景中,LLM 往往需要结合外部工具进行多轮交互,现有 RL 算法在平衡模型的长程推理与多轮工具交互能力方面仍存在不足。
有史规模最大的开源科学推理后训练数据集来了! 上海创智学院、上海交通大学(GAIR Lab)发布MegaScience。该数据集包含约125万条问答对及其参考答案,广泛覆盖生物学、化学、计算机科学、经济学、数学、医学、物理学等多个学科领域,旨在为通用人工智能系统的科学推理能力训练与评估提供坚实的数据。
北京大学提出了ReMoMask:一种全新的基于检索增强生成的Text-to-Motion框架。它是一个集成三项关键创新的统一框架:(1)基于动量的双向文本-动作模型,通过动量队列将负样本的尺度与批次大小解耦,显著提高了跨模态检索精度;(2)语义时空注意力机制,在部件级融合过程中强制执行生物力学约束,消除异步伪影;(3)RAG-无分类器引导结合轻微的无条件生成以增强泛化能力。
互联网技术的发展极大地便利了我们的生活,但许多网络任务重复繁琐,降低了效率。为了解决这一问题,研究人员正在开发基于大型基础模型(LFMs)的智能体——WebAgents,通过感知环境、规划推理和执行交互来完成用户指令,显著提升便利性。香港理工大学的研究人员从架构、训练和可信性等角度,总结了WebAgents的代表性方法,全面梳理了相关研究进展。
当大模型把人类曾经的终极考题变成日常练习,AI的奔跑却悄悄瘸了腿—— 训练能力突飞猛进,验证答案的本事却成了拖后腿的短板。 为此,上海AI Lab和澳门大学联合发布通用答案验证模型CompassVerifier与评测集VerifierBench。填补了Verifier领域没有建立验证->提升->验证的循环迭代体系的空白。
当前,大型语言模型(LLM)在软件工程领域的应用日新月异,尤其是在自动修复 Bug 方面,以 SWE-bench 为代表的基准测试展示了 AI 惊人的潜力。然而,软件开发远不止于修 Bug,功能开发与迭代才是日常工作的重头戏。
AI学会像人一样修Bug了!“这个Bug我上周刚修过”“这个报错怎么又来了”“新人怎么又在同一个地方踩坑”……
过去三十年,互联网经历了从静态网页到智能推荐的深刻演变。如今,我们正站在互联网的另一个重大转折点上。 这一转折,来自一种全新的范式设想 —— Agentic Web,一个由 AI 智能体组成的、目标导向型的互联网系统。在这个新框架中,用户不再手动浏览网页、点击按钮,而是通过自然语言向智能体发出一个目标,AI 会自主规划、搜索、调用服务、协调其他智能体,最终完成复杂任务。
自首次提出 GPT 架构以来,转眼已经过去了七年。 如果从 2019 年的 GPT-2 出发,回顾至 2024–2025 年的 DeepSeek-V3 和 LLaMA 4,不难发现一个有趣的现象:尽管模型能力不断提升,但其整体架构在这七年中保持了高度一致。
心理健康问题影响着全球数亿人的生活,然而患者往往面临着双重负担:不仅要承受疾病本身的痛苦,还要忍受来自社会的偏见和歧视。世界卫生组织数据显示,全球有相当比例的心理健康患者因为恐惧社会歧视而延迟或拒绝治疗。