最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26
最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
在迈向通用人工智能的道路上,我们一直在思考一个问题:现有的 Image Editing Agent,真的「懂」修图吗?
MiniMax海螺视频团队不藏了!首次开源就揭晓了一个困扰行业已久的问题的答案——为什么往第一阶段的视觉分词器里砸再多算力,也无法提升第二阶段的生成效果?翻译成大白话就是,虽然图像/视频生成模型的参数越做越大、算力越堆越猛,但用户实际体验下来总有一种微妙的感受——这些庞大的投入与产出似乎不成正比,模型离完全真正可用总是差一段距离。
2025 年还有一周结束,年底,AI 视频圈又卷起来了。
近日,来自 Meta、香港科技大学、索邦大学、纽约大学的一个联合团队基于 JEPA 打造了一个视觉-语言模型:VL-JEPA。据作者 Pascale Fung 介绍,VL-JEPA 是第一个基于联合嵌入预测架构,能够实时执行通用领域视觉-语言任务的非生成模型。
视觉–语言–动作(VLA)模型在机器人场景理解与操作上展现出较强的通用性,但在需要明确目标终态的长时序任务(如乐高搭建、物体重排)中,仍难以兼顾高层规划与精细操控。
在计算机图形学、三维视觉、虚拟人、XR 领域,SIGGRAPH 是毫无争议的 “天花板级会议”。 SIGGRAPH Asia 作为 SIGGRAPH 系列两大主会之一,每年只接收全球最顶尖研究团队的成果稿件,代表着学术与工业界的最高研究水平与最前沿技术趋势。
北京大学团队提出了一种新的视觉语义场景补全方法HD²-SSC,用于从多视角图像重建三维语义场景。该方法通过高维度语义解耦和高密度占用优化,解决了现有技术中二维输入与三维输出之间的维度差异,以及人工标注与真实场景密度差异的问题,从而实现更准确的语义场景补全。
在个性化视觉生成的实际应用中,通用视觉基础模型的表现往往难以满足精准需求。为实现高度定制化的生成效果,通常需对大模型进行针对性的自适应微调,但当前以 LoRA 为代表的主流方法,仍受限于定制化数据收集与冗长的优化流程,耗时耗力,难以在真实场景中广泛应用。
生成式模型正在成为机器人和具身智能领域的重要范式,它能够从高维视觉观测中直接生成复杂、灵活的动作策略,在操作、抓取等任务中表现亮眼。但在真实系统中,这类方法仍面临两大「硬伤」:一是训练极度依赖大规模演示数据,二是推理阶段需要大量迭代,动作生成太慢,难以实时控制。