最火、最全的Agent记忆综述,NUS、人大、复旦、北大等联合出品
最火、最全的Agent记忆综述,NUS、人大、复旦、北大等联合出品在过去两年里,记忆(Memory)几乎从 “可选模块” 迅速变成了 Agent 系统的 “基础设施”:对话型助手需要记住用户习惯与历史偏好;代码 / 软件工程 Agent 需要记住仓库结构、约束与修复策略;
在过去两年里,记忆(Memory)几乎从 “可选模块” 迅速变成了 Agent 系统的 “基础设施”:对话型助手需要记住用户习惯与历史偏好;代码 / 软件工程 Agent 需要记住仓库结构、约束与修复策略;
在上一篇文章中,我们系统梳理了AI Agent 记忆机制的全景综述AI Agent最新「Memory」综述 |多所顶尖机构联合发布。今天我将带您了解一项最近很火的Agent记忆项目「HINDSIGHT」
就在昨天,新加坡国立大学、中国人民大学、复旦大学等多所顶尖机构联合发布了一篇AI Agent 记忆(Memory)综述。
国内记忆框架首开源,企业实战已上线运行。在海外巨头已经将“记忆系统”提升到基础设施层的同时,红熊AI便是其中之一。公司成立于2024年,围绕多模态大模型与记忆科学开展研发,并将这些能力用于为企业提供智能客服、营销自动化与AI智能体服务。
在 Text-to-Video / Image-to-Video 技术突飞猛进的今天,我们已经习惯了这样一个常识: 视频生成的第一帧(First Frame)只是时间轴的起点,是后续动画的起始画面。
记忆,或是 AI 从「即时回答工具」迈向「个性化超级助手」的关键突破
当你阅读《红楼梦》《哈利·波特》《百年孤独》等长篇小说时,读着读着可能就忘记前面讲了什么,有时还会搞混人物关系。AI 在阅读长文章的时候也存在类似问题,当文章太长时它也会卡主,要么读得特别慢,要么记不住前面的内容。
最近半年,我阅读了业界关于 AI Agent 的工程实践:Anthropic 的 Context Engineering 论文、Manus 的工程分享、Cline 的 Memory Bank 设计等。同时自己也一直在做跟 AI Agent 相关的项目,如:Jta[1](开源的翻译 Agent,基于 Agentic Workflow)。
谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。
智源研究院(BAAI)、Spin Matrix、乐聚机器人与新加坡南洋理工大学等联合提出了一个全新的终身记忆系统——RoboBrain-Memory。RoboBrain-Memory是全球范围内首个专为全双工、全模态模型设计的终身记忆系统,旨在解决具身智能体在真实世界的复杂交互问题,不仅支持实时音视频中多用户身份识别与关系理解,还能动态维护个体档案与社会关系图谱,从而实现类人的长期个性化交互。