AI Agent最新「Memory」综述 |多所顶尖机构联合发布
AI Agent最新「Memory」综述 |多所顶尖机构联合发布就在昨天,新加坡国立大学、中国人民大学、复旦大学等多所顶尖机构联合发布了一篇AI Agent 记忆(Memory)综述。
就在昨天,新加坡国立大学、中国人民大学、复旦大学等多所顶尖机构联合发布了一篇AI Agent 记忆(Memory)综述。
新加坡国立大学 LV Lab(颜水成团队) 联合电子科技大学、浙江大学等机构提出 FeRA (Frequency-Energy Constrained Routing) 框架:首次从频域能量的第一性原理出发,揭示了扩散去噪过程具有显著的「低频到高频」演变规律,并据此设计了动态路由机制。
该论文提出 FractalForensics,一种基于分形水印的主动深度伪造检测与定位方法。不同于以往的水印向量,为达成伪造定位的功能,论文提出的水印以矩阵形式出现。
近日,来自普渡大学、德克萨斯大学、新加坡国立大学、摩根士丹利机器学习研究、小红书 hi-lab 的研究者联合提出了一种对离散扩散大语言模型的后训练方法 —— Discrete Diffusion Divergence Instruct (DiDi-Instruct)。经过 DiDi-Instruct 后训练的扩散大语言模型可以以 60 倍的加速超越传统的 GPT 模型和扩散大语言模型。
近日,范鹤鹤(浙江大学)、杨易(浙江大学)、Mohan Kankanhalli(新加坡国立大学)和吴飞(浙江大学)四位老师提出了一种具有划时代意义的神经网络基础操作——Translution。 该研究认为,神经网络对某种类型数据建模的本质是:
本研究由新加坡国立大学 ShowLab 团队主导完成。 共一作者 Yanzhe Chen 陈彦哲(博士生)与 Kevin Qinghong Lin 林庆泓(博士生)均来自 ShowLab@NUS,分别聚焦于多模态理解以及智能体(Agent)研究。 项目负责人为新加坡国立大学校长青年助理教授 Mike Zheng Shou 寿政。
来自牛津大学、新加坡国立大学、伊利诺伊大学厄巴纳-香槟分校,伦敦大学学院、帝国理工学院、上海人工智能实验室等等全球 16 家顶尖研究机构的学者,共同撰写并发布了长达百页的综述:《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》。
AI生成第三视角视频已经驾轻就熟,但第一视角生成却仍然“不熟”。为此,新加坡国立大学、南洋理工大学、香港科技大学与上海人工智能实验室联合发布EgoTwin ,首次实现了第一视角视频与人体动作的联合生成。
扩散语言模型(DLMs)是超强的数据学习者。 token 危机终于要不存在了吗? 近日,新加坡国立大学 AI 研究者 Jinjie Ni 及其团队向着解决 token 危机迈出了关键一步。
第一作者孙秋实是香港大学计算与数据科学学院博士生,硕士毕业于新加坡国立大学数据科学系。