阿里开源图片分层新模型Qwen-lmage-Layered,PS危险了?
阿里开源图片分层新模型Qwen-lmage-Layered,PS危险了?抽奖式的生图体验,确实让很多设计师在尝鲜之后又默默打开了 Photoshop。于是乎,阿里千问团队再次出手,开源了一个叫 Qwen-Image-Layered 的模型,试图从底层逻辑上解决这个问题。
抽奖式的生图体验,确实让很多设计师在尝鲜之后又默默打开了 Photoshop。于是乎,阿里千问团队再次出手,开源了一个叫 Qwen-Image-Layered 的模型,试图从底层逻辑上解决这个问题。
强化学习(RL)在大语言模型和 2D 图像生成中大获成功后,首次被系统性拓展到文本到 3D 生成领域!面对 3D 物体更高的空间复杂性、全局几何一致性和局部纹理精细化的双重挑战,研究者们首次系统研究了 RL 在 3D 自回归生成中的应用!
浙江大学ReLER团队开源ContextGen框架,攻克多实例图像生成中布局与身份协同控制难题。基于Diffusion Transformer架构,通过双重注意力机制,实现布局精准锚定与身份高保真隔离,在基准测试中超越开源SOTA模型,对标GPT-4o等闭源系统,为定制化AI图像生成带来新突破。
尽管扩散模型在单图像生成上已经日渐成熟,但当任务升级为高度定制化的多实例图像生成(Multi-Instance Image Generation, MIG)时,挑战随之显现:
Canvas-to-Image 是一种新型图像生成框架,将多种控制方式(如身份、姿态、空间布局)整合到一个统一画布中,用户可通过直观操作生成高保真、多控制的图像。它简化了创作流程,让用户在单一界面完成复杂创作,为AI创作工具提供了新范式。
过去三年,扩散模型席卷图像生成领域。以 DiT (Diffusion Transformer) 为代表的新一代架构不断刷新图像质量的极限,让模型愈发接近真实世界的视觉规律。
Canvas-to-Image 是一个面向组合式图像创作的全新框架。它取消了传统「分散控制」的流程,将身份参考图、空间布局、姿态线稿等不同类型的控制信息全部整合在同一个画布中。用户在画布上放置或绘制的内容,会被模型直接解释为生成指令,简化了图像生成过程中的控制流程。
今日,美团正式发布并开源图像生成模型LongCat-Image,这是一款在图像编辑能力上达到开源SOTA水准的6B参数模型,重点瞄准文生图与单图编辑两大核心场景。在实际体验中,它在连续改图、风格变化和材质细节上表现较好,但在复杂排版场景下,中文文字渲染仍存在不稳定的情况。
就在一周前,全宇宙最火爆的推理框架 SGLang 官宣支持了 Diffusion 模型,好评如潮。团队成员将原本在大语言模型推理中表现突出的高性能调度与内核优化,扩展到图像与视频扩散模型上,相较于先前的视频和图像生成框架,速度提升最高可达 57%:
大家都知道,图像生成和去噪扩散模型是密不可分的。高质量的图像生成都通过扩散模型实现。