陶哲轩用GPT5-Pro跨界挑战!3年无解的难题,11分钟出完整证明
陶哲轩用GPT5-Pro跨界挑战!3年无解的难题,11分钟出完整证明陶哲轩与GPT-5 Pro这对搭档再大发神威,解决了一个3年无人解决的难题。而且是“不太在自己专业范围内”的问题:微分几何领域的开放问题。要知道,陶哲轩擅长的分析、数论、组合学等研究的往往是整数、函数、算子的性质。而微分几何更侧重于流形的性质,常用的工具也很不一样。
陶哲轩与GPT-5 Pro这对搭档再大发神威,解决了一个3年无人解决的难题。而且是“不太在自己专业范围内”的问题:微分几何领域的开放问题。要知道,陶哲轩擅长的分析、数论、组合学等研究的往往是整数、函数、算子的性质。而微分几何更侧重于流形的性质,常用的工具也很不一样。
大模型安全的bug居然这么好踩??250份恶意文档就能给LLM搞小动作,不管模型大小,600M还是13B,中招率几乎没差。这是Claude母公司Anthropic最新的研究成果。
来自斯坦福大学、SambaNova Systems公司和加州大学伯克利分校的研究人员,在新论文中证明:依靠上下文工程,无需调整任何权重,模型也能不断变聪明。他们提出的方法名为智能体上下文工程ACE。
为了打破这一僵局,来自佐治亚理工学院、明尼苏达大学和哈佛大学的研究团队将目光从单纯的「成功」转向了「成功且高效」。他们推出了名为 ReCA 的集成加速框架,针对多机协作具身系统,通过软硬件协同设计跨层次优化,旨在保证不影响任务成功率的前提下,提升实时性能和系统效率,为具身智能落地奠定基础。
Mila 和微软研究院等多家机构的一个联合研究团队却另辟蹊径,提出了一个不同的问题:如果环境从一开始就不会造成计算量的二次级增长呢?他们提出了一种新的范式,其中策略会在基于一个固定大小的状态上进行推理。他们将这样的策略命名为马尔可夫式思考机(Markovian Thinker)。
本研究由新加坡国立大学 ShowLab 团队主导完成。 共一作者 Yanzhe Chen 陈彦哲(博士生)与 Kevin Qinghong Lin 林庆泓(博士生)均来自 ShowLab@NUS,分别聚焦于多模态理解以及智能体(Agent)研究。 项目负责人为新加坡国立大学校长青年助理教授 Mike Zheng Shou 寿政。
刚刚,DeepMind前研究员创立、成立一年多的AI初创Reflection AI,竟斩获高达20亿美元融资。估值瞬间飙升至80亿美元!从谷歌前CEO施密特到英伟达,再到红杉、花旗,顶级玩家争相入局,一场围绕开源AI主权的科技冷战,正在燃起资本最狂热的火焰。
来自加拿大蒙特利尔三星先进技术研究所(SAIT)的高级 AI 研究员 Alexia Jolicoeur-Martineau 介绍了微型递归模型(TRM)。这个 TRM 有多离谱呢?一个仅包含 700 万个参数(比 HRM 还要小 4 倍)的网络,在某些最困难的推理基准测试中,
本次新研究是迄今为止规模最大的大模型数据投毒调查。Anthropic 与英国人工智能安全研究所(UK AI Security Institute)和艾伦・图灵研究所(Alan Turing Institute)联合进行的一项研究彻底打破了这一传统观念:只需 250 份恶意文档就可能在大型语言模型中制造出「后门」漏洞,且这一结论与模型规模或训练数据量无关。
Meta 超级智能实验室、伦敦大学学院、Mila、Anthropic 等机构的研究者进行了探索。从抽象层面来看,他们将 LLM 视为其「思维」的改进操作符,实现一系列可能的策略。研究者探究了一种推理方法家族 —— 并行 - 蒸馏 - 精炼(Parallel-Distill-Refine, PDR),