IEEE | LLM Agent的能力边界在哪?首篇「图智能体 (GLA)」综述为复杂系统构建统一蓝图
IEEE | LLM Agent的能力边界在哪?首篇「图智能体 (GLA)」综述为复杂系统构建统一蓝图LLM Agent 正以前所未有的速度发展,从网页浏览、软件开发到具身控制,其强大的自主能力令人瞩目。然而,繁荣的背后也带来了研究的「碎片化」和能力的「天花板」:多数 Agent 在可靠规划、长期记忆、海量工具管理和多智能体协调等方面仍显稚嫩,整个领域仿佛一片广袤却缺乏地图的丛林。
LLM Agent 正以前所未有的速度发展,从网页浏览、软件开发到具身控制,其强大的自主能力令人瞩目。然而,繁荣的背后也带来了研究的「碎片化」和能力的「天花板」:多数 Agent 在可靠规划、长期记忆、海量工具管理和多智能体协调等方面仍显稚嫩,整个领域仿佛一片广袤却缺乏地图的丛林。
大家一直热衷谈论的AGI忽然不香了,主流的AI公司都开始改口谈「超级智能」,AGI已经沦落为研究员口中的「自动化软件开发工具」。苏莱曼领军的微软MAI团队,正成为超级智能赛道一位新的「超级玩家」。曾曝「欺凌员工」的他,如今要打造有「人味」的AI。
现有的LLM智能体训练框架都是针对单智能体的,多智能体的“群体强化”仍是一个亟须解决的问题。为了解决这一领域的研究痛点,来自UCSD和英特尔的研究人员,提出了新的提出通用化多智能体强化学习框架——PettingLLMs。支持任意组合的多个LLM一起训练。
近日,诺贝尔奖得主、美国华盛顿大学教授大卫·贝克(David Baker)和团队再次将 AI 成果送上 Nature,他们开发出一种基于 AI 的蛋白质结构生成模型 RFdiffusion,能在指定病毒表面特定表位的情况下,辅助人类从头设计出能够与之结合的抗体结构。
几个月后,这家非营利研究机构及其新拆分的商业实体 Edison Scientific 又发布了一套更强大的 AI 科学家系统 Kosmos。这个系统在单次运行中可以持续工作 12 至 48 小时,完成相当于人类科研团队数月才能完成的工作量,且其产出的发现中有近 80% 经独立专家验证为准确。
研究团队提出一种简洁且高效的算法 ——SimKO (Simple Pass@K Optimization),显著优化了 pass@K(K=1 及 K>1)性能。同时,团队认为当前的用熵(Entropy)作为指标衡量多样性存在局限:熵无法具体反映概率分布的形态。如图 2(c)所示,两个具有相同熵值的分布,一个可能包含多个峰值,而另一个则可能高度集中于一个峰值。
视频生成模型如Veo-3能生成逼真视频,但有研究发现其推理能力存疑。香港中文大学、北京大学、东北大学的研究者们设计了12项测试,发现模型只能模仿表面模式,未真正理解因果。这项研究为视频模型推理能力评估提供基准,指明未来研究方向。
智源研究院(BAAI)、Spin Matrix、乐聚机器人与新加坡南洋理工大学等联合提出了一个全新的终身记忆系统——RoboBrain-Memory。RoboBrain-Memory是全球范围内首个专为全双工、全模态模型设计的终身记忆系统,旨在解决具身智能体在真实世界的复杂交互问题,不仅支持实时音视频中多用户身份识别与关系理解,还能动态维护个体档案与社会关系图谱,从而实现类人的长期个性化交互。
本文来自于香港中文大学 MMLab 和 vivo AI Lab,其中论文第一作者肖涵,主要研究方向为多模态大模型和智能体学习,合作作者王国志,研究方向为多模态大模型和 Agent 强化学习。项目 le
著名数学家陶哲轩发论文了,除了陶大神,论文作者还包括 Google DeepMind 高级研究工程师 BOGDAN GEORGIEV 等人。论文展示了 AlphaEvolve 如何作为一种工具,自主发现新的数学构造,并推动人们对长期未解数学难题的理解。AlphaEvolve 是谷歌在今年 5 月发布的一项研究,一个由 LLMs 驱动的革命性进化编码智能体。