AI资讯新闻榜单内容搜索-编码器

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 编码器
DeepSeek又拿第一!首创「因果流」视觉推理,超越Gemini

DeepSeek又拿第一!首创「因果流」视觉推理,超越Gemini

DeepSeek又拿第一!首创「因果流」视觉推理,超越Gemini

DeepSeek开源DeepSeek-OCR2,引入了全新的DeepEncoder V2视觉编码器。该架构打破了传统模型按固定顺序(从左上到右下)扫描图像的限制,转而模仿人类视觉的「因果流(Causal Flow)」逻辑。

来自主题: AI技术研报
5758 点击    2026-01-27 16:51
LeCun、谢赛宁团队重磅论文:RAE能大规模文生图了,且比VAE更好

LeCun、谢赛宁团队重磅论文:RAE能大规模文生图了,且比VAE更好

LeCun、谢赛宁团队重磅论文:RAE能大规模文生图了,且比VAE更好

编辑|Panda 在文生图模型的技术版图中,VAE 几乎已经成为共识。从 Stable Diffusion 到 FLUX,再到一系列扩散 Transformer,主流路线高度一致:先用 VAE 压缩视

来自主题: AI技术研报
6635 点击    2026-01-24 10:52
视觉模型既懂语义,又能还原细节,南洋理工&商汤提出棱镜假说

视觉模型既懂语义,又能还原细节,南洋理工&商汤提出棱镜假说

视觉模型既懂语义,又能还原细节,南洋理工&商汤提出棱镜假说

作者来自 Nanyang Technological University(MMLab) 与 SenseTime Research,提出 Prism Hypothesis(棱镜假说) 与 Unified Autoencoding(UAE),尝试用 “频率谱” 的统一视角,把语义编码器与像素编码器的表示冲突真正 “合并解决”。

来自主题: AI技术研报
9807 点击    2026-01-15 09:20
RAE的终极形态?北大&阿里提出UniLIP: 将CLIP拓展到重建、生成和编辑

RAE的终极形态?北大&阿里提出UniLIP: 将CLIP拓展到重建、生成和编辑

RAE的终极形态?北大&阿里提出UniLIP: 将CLIP拓展到重建、生成和编辑

统一多模态模型要求视觉表征必须兼顾语义(理解)和细节(生成 / 编辑)。早期 VAE 因语义不足而理解受限。近期基于 CLIP 的统一编码器,面临理解与重建的权衡:直接量化 CLIP 特征会损害理解性能;而为冻结的 CLIP 训练解码器,又因特征细节缺失而无法精确重建。例如,RAE 使用冻结的 DINOv2 重建,PSNR 仅 19.23。

来自主题: AI技术研报
8023 点击    2025-11-03 09:50
天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

近年来,基于扩散模型的图像生成技术发展迅猛,催生了Stable Diffusion、Midjourney等一系列强大的文生图应用。然而,当前主流的训练范式普遍依赖一个核心组件——变分自编码器(VAE),这也带来了长久以来困扰研究者们的几个问题:

来自主题: AI技术研报
6286 点击    2025-10-30 17:03
高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

来自主题: AI技术研报
7550 点击    2025-10-30 10:55
无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」

无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」

无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」

长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练

来自主题: AI技术研报
6297 点击    2025-10-23 15:10
LLaVA-OneVision-1.5全流程开源,8B模型预训练只需4天、1.6万美元

LLaVA-OneVision-1.5全流程开源,8B模型预训练只需4天、1.6万美元

LLaVA-OneVision-1.5全流程开源,8B模型预训练只需4天、1.6万美元

LLaVA 于 2023 年提出,通过低成本对齐高效连接开源视觉编码器与大语言模型,使「看图 — 理解 — 对话」的多模态能力在开放生态中得以普及,明显缩小了与顶级闭源模型的差距,标志着开源多模态范式的重要里程碑。

来自主题: AI技术研报
9187 点击    2025-10-15 12:12
谢赛宁新作:VAE退役,RAE当立

谢赛宁新作:VAE退役,RAE当立

谢赛宁新作:VAE退役,RAE当立

谢赛宁团队最新研究给出了答案——VAE的时代结束,RAE将接力前行。其中表征自编码器RAE(Representation Autoencoders)是一种用于扩散Transformer(DiT)训练的新型自动编码器,其核心设计是用预训练的表征编码器(如DINO、SigLIP、MAE 等)与训练后的轻量级解码器配对,从而替代传统扩散模型中依赖的VAE(变分自动编码器)。

来自主题: AI技术研报
7877 点击    2025-10-14 16:34
OpenVision 2:大道至简的生成式预训练视觉编码器

OpenVision 2:大道至简的生成式预训练视觉编码器

OpenVision 2:大道至简的生成式预训练视觉编码器

本文来自加州大学圣克鲁兹分校(UCSC)、苹果公司(Apple)与加州大学伯克利分校(UCB)的合作研究。第一作者刘彦青,本科毕业于浙江大学,现为UCSC博士生,研究方向包括多模态理解、视觉-语言预训

来自主题: AI技术研报
5930 点击    2025-09-16 09:37