
推理AI「脑补」成瘾,废话拉满!马里兰华人学霸揭开内幕
推理AI「脑补」成瘾,废话拉满!马里兰华人学霸揭开内幕研究发现,推理模型(如DeepSeek-R1、o1)遇到「缺失前提」(MiP)的问题时,这些模型往往表现失常:回答长度激增、计算资源浪费。本文基于马里兰大学和利哈伊大学的最新研究,深入剖析推理模型在MiP问题上的「过度思考」现象,揭示其背后的行为模式,带你一窥当前AI推理能力的真实边界。
研究发现,推理模型(如DeepSeek-R1、o1)遇到「缺失前提」(MiP)的问题时,这些模型往往表现失常:回答长度激增、计算资源浪费。本文基于马里兰大学和利哈伊大学的最新研究,深入剖析推理模型在MiP问题上的「过度思考」现象,揭示其背后的行为模式,带你一窥当前AI推理能力的真实边界。
近年来,随着大型语言模型(LLMs)的快速发展,多模态理解领域取得了前所未有的进步。像 OpenAI、InternVL 和 Qwen-VL 系列这样的最先进的视觉-语言模型(VLMs),在处理复杂的视觉-文本任务时展现了卓越的能力。
MCP 传输机制(Transport)是 MCP 客户端与 MCP 服务器通信的一个桥梁,定义了客户端与服务器通信的细节,帮助客户端和服务器交换消息。
MCP 协议定义了一个严格的生命周期,用于客户端-服务器连接,确保了通信双方能进行适当的状态管理和能力协商。
MCP 协议遵循互联网常见的 C / S 架构,即客户端(Client)- 服务器(Server)架构。
在大模型迈向推理时代的当下,数学推理能力已成为衡量语言模型智能上限的关键指标。
终于,华为盘古大模型系列上新了,而且是昇腾原生的通用千亿级语言大模型。我们知道,如今各大科技公司纷纷发布百亿、千亿级模型。但这些大部分模型训练主要依赖英伟达的 GPU。
尽管这些论文的结论统统指向了强化学习带来的显著性能提升,但来自图宾根大学和剑桥大学的研究者发现,强化学习导致的许多「改进」可能只是噪音。「受推理领域越来越多不一致的经验说法的推动,我们对推理基准的现状进行了严格的调查,特别关注了数学推理领域评估算法进展最广泛使用的测试平台之一 HuggingFaceH4,2024;AI - MO。」
本文作者刘圳是香港中文大学(深圳)数据科学学院的助理教授,肖镇中是德国马克思普朗克-智能系统研究所和图宾根大学的博士生,刘威杨是德国马克思普朗克-智能系统研究所的研究员,Yoshua Bengio 是蒙特利尔大学和加拿大 Mila 研究所的教授,张鼎怀是微软研究院的研究员。此论文已收录于 ICLR 2025。
来自Meta和NYU的团队,刚刚提出了一种MetaQuery新方法,让多模态模型瞬间解锁多模态生成能力!令人惊讶的是,这种方法竟然如此简单,就实现了曾被认为需要MLLM微调才能具备的能力。
GitHub 在其 Copilot 功能中引入了一项基于 AI 的密码扫描功能,该功能已经整合到 GitHub Secret Protection 中。
如果你没有杜蕾斯背后强大的5A广告公司、鬼才般的创意团队、句句封神的的金牌文案、审美爆辣的视觉艺术家。借助即梦刚上线的3.0生图模型以及 Deepseek生创意和文案,你也可以轻松复刻一个「杜蕾斯级别」的刷屏海报。
人和智能体共享奖励参数,这才是强化学习正确的方向?
仅用4090就能实现大规模城市场景重建!
在大模型争霸的时代,算力与效率的平衡成为决定胜负的关键。
AI Agent 领域也存在 scaling law,甚至还在加速。
简单分享一份下线 AI 产品的信息列表(AI Graveyard),里面囊括的产品小类非常多。
高质量数据枯竭,传统预训练走向终点,大模型如何突破瓶颈?
“让机器人看懂世界、听懂指令、动手干活”正从科幻走向现实。
随着智能手机和物联网设备普及,移动端AI成为趋势,带来离线运行、低延迟、隐私保护等优势。然而,模型本地存储同时带来了严重风险。
字节跳动豆包团队今天发布了自家新推理模型 Seed-Thinking-v1.5 的技术报告。从报告中可以看到,这是一个拥有 200B 总参数的 MoE 模型,每次工作时会激活其中 20B 参数。其表现非常惊艳,在各个领域的基准上都超过了拥有 671B 总参数的 DeepSeek-R1。有人猜测,这就是字节豆包目前正在使用的深度思考模型。
大家还记得那个 ICLR 2025 首次满分接收、彻底颠覆静态图像光照编辑的工作 IC-Light 吗?
报告深入分析了特朗普总统于2025年4月2日宣布的“解放日”关税措施对美国人工智能(AI)基础设施建设、相关供应链以及全球贸易格局的潜在影响。
随着技术的深入应用,如何高效利用大模型技术优化用户体验,同时应对其带来的诸多挑战?本文将从RAG的发展趋势、技术挑战、核心举措以及未来展望四个维度总结我们应对挑战的新的思路和方法。
前两天给大家分享了一个我认为最强的开源AI Workflow平台:n8n。经过这几天的研究,我用n8n实现了一套超实用的X(原Twitter)热点监控workflow(工作流)。它由两个workflow(工作流)组成
学术写作通常需要花费大量精力查询文献引用,而以ChatGPT、GPT-4等为代表的通用大语言模型(LLM)虽然能够生成流畅文本,但经常出现“引用幻觉”(Citation Hallucination),即模型凭空捏造文献引用。这种现象严重影响了学术论文的可信度与专业性。
又一专业领域成功引入AI工程师!
在现实世界中,如何让智能体理解并挖掘 3D 场景中可交互的部位(Affordance)对于机器人操作与人机交互至关重要。所谓 3D Affordance Learning,就是希望模型能够根据视觉和语言线索,自动推理出物体可供哪些操作、以及可交互区域的空间位置,从而为机器人或人工智能系统提供对物体潜在操作方式的理解。
港中文、清华等高校提出SICOG框架,通过预训练、推理优化和后训练协同,引入自生成数据闭环和结构化感知推理机制,实现模型自我进化,为大模型发展提供新思路。
近年来,端到端(End-to-End,E2E)自动驾驶技术不断进步,但在复杂的闭环交互环境中,由于其因果推理能力有限,仍然难以做出准确决策。虽然视觉 - 语言大模型(Vision-Language Model,VLM)凭借其卓越的理解和推理能力,为端到端自动驾驶带来了新的希望,但现有方法在 VLM 的语义推理空间和纯数值轨迹的行动空间之间仍然存在巨大鸿沟。