Claude Code 遭深度逆向!核心技术架构被 95% 还原
Claude Code 遭深度逆向!核心技术架构被 95% 还原前几天晚上,我在 GitHub 上看到一个让我眼睛发直的项目。
前几天晚上,我在 GitHub 上看到一个让我眼睛发直的项目。
持续适应性学习,即指适应环境并提升表现的能力,是自然智能与人工智能共有的关键特征。大脑达成这一目标的核心机制在于神经递质调控(例如多巴胺DA、乙酰胆碱ACh、肾上腺素)通过设置大脑全局变量来有效防止灾难性遗忘,这一机制有望增强人工神经网络在持续学习场景中的鲁棒性。本文将概述该领域的进展,进而详述两项6月Nature发表的背靠背相关研究。
在万物互联的智能时代,具身智能和空间智能需要的不仅是视觉和语言,还需要突破传统感官限制的能力
扩散语言模型(Diffusion-based LLMs,简称 dLLMs)以其并行解码、双向上下文建模、灵活插入masked token进行解码的特性,成为一个重要的发展方向。
大语言模型(Large Language Models,LLMs)技术的迅猛发展,正在深刻重塑医疗行业。医疗领域正成为这一前沿技术的 “新战场” 之一。大模型具备强大的文本理解与生成能力,能够快速读取医学文献、解读病历记录,甚至基于患者表述生成初步诊断建议,有效辅助医生提升诊断的准确性与效率。
3D生成又补齐了一块重要拼图——物理属性! 南洋理工大学-商汤联合研究中心S-Lab,及上海人工智能实验室合作提出了PhysXNet,号称首个系统性标注的物理基础3D数据集。
2025年6月11日,礼来和Juvena Therapeutics达成了一项超6.5亿美元的合作协议。根据协议,礼来获得针对多个靶点的主要候选药物的独家许可,并将在Juvena达到特定里程碑后,决定是否推进某个项目,一旦礼来决定推进,其团队将负责所有后续的研发和商业化。
兄弟们!又发现宝藏项目了! 刚刚在GitHub上刷到这个叫Graphiti的东西,卧槽,简直是AI智能体的记忆神器啊!
你有没有想过,我们正在见证软件史上最深刻的一次变革?不是什么渐进式的改进,而是一场颠覆性的革命。
小时候完成月考测试后,老师会通过讲解考试卷中吃错题让同学们在未来取得好成绩。
GTA 工作由中国科学院自动化研究所、伦敦大学学院及香港科技大学(广州)联合研发,提出了一种高效的大模型框架,显著提升模型性能与计算效率。
Kimi K2称霸全球开源模型的秘籍公开了!
如何让AI像人一样,仅凭少量演示,就能稳健适应复杂多变的真实场景? 美国东北大学和波士顿动力RAI提出了HEP(Hierarchical Equivariant Policy via Frame Transfer)框架,首创“坐标系转移接口”,让机器人学习更高效、泛化更灵活。
人形机器人作为用于复杂运动控制、人机交互和通用物理智能的多功能平台,正受到前所未有的关注。然而,由于其复杂的动力学、欠驱动和多样化的任务需求,实现高效的人形机器人全身控制 (Whole-Body Control,WBC) 仍然是一项根本性的挑战。
机器人也能实现新陈代谢,自我生长了?!
本文的主要作者来自复旦大学和南洋理工大学 S-Lab,研究方向聚焦于视觉推理与强化学习优化。
让机器人像人一样边看边理解,来自浙江大学和vivo人工智能实验室的研究团队带来了新进展。
最近使用cursor的朋友可能已经遇到了这个问题:打开Cursor,准备使用Claude- sonnet4开始Vibe Coding,却看到了"Model not available"的提示。这不是您的网络问题,而是Cursor对中国地区用户限制了高级模型的访问。对于习惯了AI辅助编程的工程师来说,这简直像是突然失去了得力助手。
在噪声污染严重影响预训练数据的质量时,如何能够高效且精细地精炼数据? 中科院计算所与阿里Qwen等团队联合提出RefineX,一个通过程序化编辑任务实现大规模、精准预训练数据精炼的新框架。
多模态大模型崛起,安全问题紧随其后 近年来,大语言模型(LLMs)的突破式进展,催生了视觉语言大模型(LVLMs)的快速兴起,代表作如 GPT-4V、LLaVA 等。
天津大学联合清华和卡迪夫大学推出RESCUE系统,把「大脑感知-决策-行动」循环搬进电脑,让数百个虚拟人同时在线逃生:他们能实时看见地形、同伴和出口,自动绕开障碍,年轻人快跑、老人慢走、残疾人蹒跚;系统还能把身体24个部位的碰撞力用颜色实时标出来,帮助设计师提前找出潜在风险区域,也能用来演练地铁火灾、演唱会疏散等公共安全场景。
提到机械臂,第一反应的关键词是「抓取」,高级些的机械臂也就做做冰淇淋和咖啡之类的小任务。
埃默里大学团队推出首个覆盖8个真实任务、带有人类解释真值的视觉解释基准Saliency-Bench,统一评估流程与开源工具让显著性方法可公平比较,获KDD’25接收,为可解释AI奠定透明、可靠的基石。
多模态推理,也可以讲究“因材施教”?
现有Mobile/APP Agent的工作可以适应实时环境,并执行动作,但由于它们大部分都仅依赖于动作级奖励(SFT或RL)。
LLM太谄媚! 就算你胡乱质疑它的答案,强如GPT-4o这类大模型也有可能立即改口。
AlphaFold夺诺奖引争议!2016年,一位博士生在NeurIPS提出的研究,或许正是AlphaFold的「原型」。如今,导师Daniel Cremers发声,质问为何DeepMind忽略这项研究、不加以引用?
具身这么火,面向具身场景的生成式渲染器也来了。 中科院自动化所张兆翔教授团队研发的TC-Light,能够对具身训练任务中复杂和剧烈运动的长视频序列进行逼真的光照与纹理重渲染,同时具备良好的时序一致性和低计算成本开销。
给AI一场压力测试,结果性能暴跌近30%。 来自上海人工智能实验室、清华大学和中国人民大学的研究团队设计了一个全新的“压力测试”框架——REST (Reasoning Evaluation through Simultaneous Testing)。
7月2日,一个跨国团队在Nature杂志发表了一项开创性研究,宣称其推出的AI系统能够“模拟人类心智”。该系统在实验中可以“扮演”人类,生成逼真的人类行为。