
铰链物体的通用世界模型,超越扩散方法,入选CVPR 2025
铰链物体的通用世界模型,超越扩散方法,入选CVPR 2025基于当前观察,预测铰链物体的的运动,尤其是 part-level 级别的运动,是实现世界模型的关键一步。
基于当前观察,预测铰链物体的的运动,尤其是 part-level 级别的运动,是实现世界模型的关键一步。
来自UIUC等大学的华人团队,从LLM的基础机制出发,揭示、预测并减少幻觉!通过实验,研究人员揭示了LLM的知识如何相互影响,总结了幻觉的对数线性定律。更可预测、更可控的语言模型正在成为现实。
近年来,视频生成技术在动作真实性方面取得了显著进展,但在角色驱动的叙事生成这一关键任务上仍存在不足,限制了其在自动化影视制作与动画创作中的应用潜力。
动作捕捉,刚刚发生了革命。
根据去年2024年7月28日Meta公司在训练大模型(Llama 3)时使用“16384 个 英伟达H100 GPU 集群”的经验,该显卡在高负载、大规模集群运行环境下容易出现以下故障点:
当前搜索AI市场面临着一个显著的断层:Perplexity的Sonar Reasoning Pro和OpenAI的GPT-4o Search Preview等专有解决方案与开源替代品之间存在巨大差距。这些封闭式系统虽然表现优异,但却限制了透明度、创新和创业自由。作为一名正在开发Agent产品的工程师,你是否曾经渴望拥有一个功能强大且完全开放的搜索框架?
就在刚刚,Higgsfiled AI推出Motion Controls AI视频生成,在模仿电影级别的动作捕捉删上取得了新进展!不论是是360度环绕拍摄还是子弹时间都是信手拈来,从此就像口袋里装着一个「摄影组」,电影级别的画面也可以由AI代劳。
原生多模态Llama 4终于问世,开源王座一夜易主!首批共有两款模型Scout和Maverick,前者业界首款支持1000万上下文单H100可跑,后者更是一举击败了DeepSeek V3。目前,2万亿参数巨兽还在训练中。
想象一下,一座生机勃勃的 3D 城市在你眼前瞬间成型 —— 没有漫长的计算,没有庞大的存储需求,只有极速的生成和惊人的细节。
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
文生图 or 图生文?不必纠结了!
大型语言模型 (LLM) 在软体机器人设计领域展现出了令人振奋的应用潜力。
本文介绍了 FoundationStereo,一种用于立体深度估计的基础模型,旨在实现强大的零样本泛化能力。
在人工智能飞速发展的今天,LLM 的能力令人叹为观止,但其局限性也日益凸显 —— 它们往往被困于训练数据的「孤岛」,无法直接触及实时信息或外部工具。
推荐大模型也可生成式,并且首次在国产昇腾NPU上成功部署!
最新研究发现,LLM在面对人格测试时,会像人一样「塑造形象」,提升外向性和宜人性得分。AI的讨好倾向,可能导致错误的回复,需要引起警惕。
大模型虽然推理能力增强,却常常「想太多」,回答简单问题也冗长复杂。Rice大学的华人研究者提出高效推理概念,探究了如何帮助LLM告别「过度思考」,提升推理效率。
最近,像 OpenAI o1/o3、DeepSeek-R1 这样的大型推理模型(Large Reasoning Models,LRMs)通过加长「思考链」(Chain-of-Thought,CoT)在推理任务上表现惊艳。
AI 可能「借鉴」了什么参考内容,但压根不提。
Attention 还在卷自己。
随着视频内容的重要性日益提升,如何处理理解长视频成为多模态大模型面临的关键挑战。长视频理解能力,对于智慧安防、智能体的长期记忆以及多模态深度思考能力有着重要价值。
DeepSeek新论文来了!在清华研究者共同发布的研究中,他们发现了奖励模型推理时Scaling的全新方法。DeepSeek R2,果然近了。
作为一名从业七年的程序员,最近听到很多程序员朋友都喜提了n+1裁员大礼包。
前几天有朋友还在问我GPU租赁市场的情况,正好SemiAnalysis出了这篇文章:GPU云ClusterMA评级系统 | GPU租用指南。
当大多数AI Agent仍在挣扎于结构化推理能力不足的困境时,本文带来了一个来自认知科学领域的突破性解决方案。
近来风头正盛的GPT-4.5,不仅在日常问答中展现出惊人的上下文连贯性,在设计、咨询等需要高度创造力的任务中也大放异彩。
专门解决电信行业用户行为建模的难题。
OpenAI o3推理成本从3000美元飙至3万美元,暴增10倍。o3-high靠暴力试错生成4300万字解题,却被ARC-AGI「除名」。
简单的任务,传统的Transformer却错误率极高。Meta FAIR团队重磅推出多token注意力机制(MTA),精准捕捉复杂信息,带来模型性能飞升!