
让大模型合成检查器:UIUC团队挖出Linux内核90余个长期潜伏漏洞
让大模型合成检查器:UIUC团队挖出Linux内核90余个长期潜伏漏洞最近的报道指出,OpenAI 的 o3 模型已经在 Linux 内核中发现了一个零日漏洞;而本文的 KNighter 更进一步,通过自动生成静态分析检查器,把模型的洞察沉淀为工程可用、用户可见的逻辑规则,实现了规模化的软件漏铜、缺陷挖掘。
最近的报道指出,OpenAI 的 o3 模型已经在 Linux 内核中发现了一个零日漏洞;而本文的 KNighter 更进一步,通过自动生成静态分析检查器,把模型的洞察沉淀为工程可用、用户可见的逻辑规则,实现了规模化的软件漏铜、缺陷挖掘。
随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视
PhysRig是UIUC与Stability AI联合提出的首个面向角色动画的可微物理绑定框架。通过将刚性骨架嵌入弹性软体体积,并使用Material Point Method(MPM)进行可微分物理模拟,PhysRig能够自然还原皮肤、脂肪、尾巴等柔性结构的变形过程,显著提升角色动画的真实感,解决传统LBS无法克服的体积丢失与变形伪影问题。
让大模型在学习推理的同时学会感知。伊利诺伊大学香槟分校(UIUC)与阿里巴巴通义实验室联合推出了全新的专注于多模态推理的强化学习算法PAPO(Perception-Aware Policy Optimization)。
本文第一作者为韩沛煊,本科毕业于清华大学计算机系,现为伊利诺伊大学香槟分校(UIUC)计算与数据科学学院一年级博士生,接受 Jiaxuan You 教授指导。
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
AI越来越聪明,但如果它们反应慢,效率低,也难以满足我们的需求。
而马毅是那类觉得不够的人,他于无声处开始提问:智能的本质是什么?自 2000 年从伯克利大学博士毕业以来,马毅先后任职于伊利诺伊大学香槟分校(UIUC)、微软亚研院、上海科技大学、伯克利大学和香港大学,现担任香港大学计算与数据科学学院院长。他和团队提出的压缩感知技术,到现在还在影响计算机视觉中模式识别领域的发展。
来自英伟达和UIUC的华人团队提出一种高效训练方法,将LLM上下文长度从128K扩展至惊人的400万token SOTA纪录!基于Llama3.1-Instruct打造的UltraLong-8B模型,不仅在长上下文基准测试中表现卓越,还在标准任务中保持顶尖竞争力。
DeepSeek-R1 展示了强化学习在提升模型推理能力方面的巨大潜力,尤其是在无需人工标注推理过程的设定下,模型可以学习到如何更合理地组织回答。然而,这类模型缺乏对外部数据源的实时访问能力,一旦训练语料中不存在某些关键信息,推理过程往往会因知识缺失而失败。