
MIT发布自适应语言模型!新任务,自生成远超「GPT-4.1合成训练数据」
MIT发布自适应语言模型!新任务,自生成远超「GPT-4.1合成训练数据」自适应语言模型框架SEAL,让大模型通过生成自己的微调数据和更新指令来适应新任务。SEAL在少样本学习和知识整合任务上表现优异,显著提升了模型的适应性和性能,为大模型的自主学习和优化提供了新的思路。
自适应语言模型框架SEAL,让大模型通过生成自己的微调数据和更新指令来适应新任务。SEAL在少样本学习和知识整合任务上表现优异,显著提升了模型的适应性和性能,为大模型的自主学习和优化提供了新的思路。
来自加州大学河滨分校(UC Riverside)、密歇根大学(University of Michigan)、威斯康星大学麦迪逊分校(University of Wisconsin–Madison)、德州农工大学(Texas A&M University)的团队在 ICCV 2025 发表首个面向自动驾驶语义占用栅格构造或预测任务的统一基准框架 UniOcc。
最少只用2张图,AI就能像人类一样理解3D空间了。ICCV 2025最新中稿的LangScene-X:以全新的生成式框架,仅用稀疏视图(最少只用2张图像)就能构建可泛化的3D语言嵌入场景,对比传统方法如NeRF,通常需要20个视角。
大模型记忆管理和优化框架是当前各大厂商争相优化的热点方向,MemOS 相比现有 OpenAI 的全局记忆在大模型记忆评测集上呈现出显著的提升,平均准确性提升超过 38.97%,Tokens 的开销进一步降低 60.95%,一举登顶记忆管理的 SOTA 框架,特别是在考验框架时序建模与检索能力的时序推理任务上,提升比例更是达到了 159%,相当震撼!
面对扩散模型推理速度慢、成本高的问题,HKUST&北航&商汤提出了全新缓存加速方案——HarmoniCa:训练-推理协同的特征缓存加速框架,突破DiT架构在部署端的速度瓶颈,成功实现高性能无损加速。
大模型越来越大,通用能力越来越强,但一遇到数学、科学、逻辑这类复杂问题,还是常“翻车”。为破解这一痛点,华为诺亚方舟实验室提出全新高阶推理框架 ——思维森林(Forest-of-Thought,FoT)。
那问题来了:大型语言模型(LLM)虽然语言能力惊人,但它们在语义压缩方面能做出和人类一样的权衡吗?为探讨这一问题,图灵奖得主LeCun团队,提出了一种全新的信息论框架。该框架通过对比人类与LLM在语义压缩中的策略,揭示了两者在压缩效率与语义保真之间的根本差异:LLM偏向极致的统计压缩,而人类更重细节与语境。
MLA-Trust 是首个针对图形用户界面(GUI)环境下多模态大模型智能体(MLAs)的可信度评测框架。该研究构建了涵盖真实性、可控性、安全性与隐私性四个核心维度的评估体系,精心设计了 34 项高风险交互任务,横跨网页端与移动端双重测试平台,对 13 个当前最先进的商用及开源多模态大语言模型智能体进行深度评估,系统性揭示了 MLAs 从静态推理向动态交互转换过程中所产生的可信度风险。
2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。
UCSD等推出Lmgame Bench标准框架,结合多款经典游戏,分模块测评模型的感知、记忆与推理表现。结果显示,不同模型在各游戏中表现迥异,凸显游戏作为AI评估工具的独特价值。