破解AI对不同上下⽂位置的敏感度不⼀致,新框架使出“解铃还须系铃人”
破解AI对不同上下⽂位置的敏感度不⼀致,新框架使出“解铃还须系铃人”语言模型遭遇严重的位置偏见,即模型对不同上下⽂位置的敏感度不⼀致。模型倾向于过度关注输⼊序列中的特定位置,严重制约了它们在复杂推理、⻓⽂本理解以及模型评估等关键任务上的表现。
语言模型遭遇严重的位置偏见,即模型对不同上下⽂位置的敏感度不⼀致。模型倾向于过度关注输⼊序列中的特定位置,严重制约了它们在复杂推理、⻓⽂本理解以及模型评估等关键任务上的表现。
知识图谱推理是人工智能的关键技术,在多领域有广泛应用,但现有方法存在推理效率低、表达能力不足、过平滑问题等挑战。中科大研究团队提出DuetGraph,采用双阶段粗到细推理框架与双通路全局 - 局部特征融合模型,实现推理精度与效率的平衡,为大规模知识推理提供解决方案。
近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。
斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。
全新AI工具EditVerse将图片和视频编辑整合到一个框架中,让你像P图一样轻松P视频。通过统一的通用视觉语言和上下文学习能力,EditVerse解决了传统视频编辑复杂、数据稀缺的问题,还能实现罕见的「涌现能力」。在效果上,它甚至超越了商业工具Runway,预示着一个创作新纪元的到来。
阿里巴巴与上海交通大学 EPIC Lab 联合提出 Socratic-Zero,一个完全无外部数据依赖的自主推理训练框架。该方法仅从 100 个种子问题出发,通过三个智能体的协同进化,自动生成高质量、难度自适应的课程,并持续提升模型推理能力。
我们被「黑箱」困住了!深度生成模型虽能创造逼真内容,但其内部运作机制如同「黑箱」,潜变量的意义难以捉摸。埃默里大学团队提出LatentExplainer框架,巧妙地将潜在变量转化为易懂解释,大幅提升模型解释质量与可靠性。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。
大模型在强化学习过程中,终于知道什么经验更宝贵了! 来自上海人工智能实验室、澳门大学、南京大学和香港中文大学的研究团队,最近提出了一套经验管理和学习框架ExGRPO—— 通过科学地识别、存储、筛选和学习有价值的经验,让大模型在优化推理能力的道路上,走得更稳、更快、更远。
近日,范鹤鹤(浙江大学)、杨易(浙江大学)、Mohan Kankanhalli(新加坡国立大学)和吴飞(浙江大学)四位老师提出了一种具有划时代意义的神经网络基础操作——Translution。 该研究认为,神经网络对某种类型数据建模的本质是: