为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本
为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本近年来,大型语言模型的参数规模屡创新高,随之而来的推理开销也呈指数级增长。如何降低超大模型的推理成本,成为业界关注的焦点之一。Mixture-of-Experts (MoE,混合专家) 架构通过引入大量 “专家” 子模型,让每个输入仅激活少数专家,从而在参数规模激增的同时避免推理计算量同比增长。
近年来,大型语言模型的参数规模屡创新高,随之而来的推理开销也呈指数级增长。如何降低超大模型的推理成本,成为业界关注的焦点之一。Mixture-of-Experts (MoE,混合专家) 架构通过引入大量 “专家” 子模型,让每个输入仅激活少数专家,从而在参数规模激增的同时避免推理计算量同比增长。
让智能体自己摸索新方法,还模仿自己的成功经验。腾讯优图实验室开源强化学习算法——SPEAR(Self-imitation with Progressive Exploration for Agentic Reinforcement Learning)。
近年来,NeRF、SDF 与 3D Gaussian Splatting 等方法大放异彩,让 AI 能从图像中恢复出三维世界。但随着相关技术路线的发展与完善,瓶颈问题也随之浮现:
2022年11月,OpenAI的ChatGPT问世,这一事件不仅是技术创新的里程碑,更被视为重塑全球AI战略版图的关键转折点,它标志着新一轮大国AI竞赛的序幕被正式拉开。在此背景下,其增长的规模与速度本身,就是一种颠覆性的战略壁垒。
AI自己讲明白论文,还能生成更美观的幻灯片。加州大学圣塔芭芭拉(UCSB)与圣克鲁兹(UCSC)的研究者提出EvoPresent,一个能够自我进化的学术演讲智能体框架,让AI不仅能“讲清楚论文”,还能“讲得好看”。
InfLLM-V2是一种可高效处理长文本的稀疏注意力模型,仅需少量长文本数据即可训练,且性能接近传统稠密模型。通过动态切换短长文本处理模式,显著提升长上下文任务的效率与质量。从短到长低成本「无缝切换」,预填充与解码双阶段加速,释放长上下文的真正生产力。
3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。
构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。
在这一背景下,清华大学与生数科技(Shengshu AI)团队围绕桥类生成模型与音频超分任务展开系统研究,先后在语音领域顶级会议ICASSP 2025和机器学习顶级会议NeurIPS 2025发表了两项连续成果:
在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化
大模型参数量飙升至千亿、万亿级,却陷入“规模越大,效率越低” 困境?中科院自动化所新研究给出破局方案——首次让MoE专家告别“静态孤立”,开启动态“组队学习”。
AI竟然画不好一张 “准确” 的图表?AI生图标杆如FLUX.1、GPT-Image,已经能生成媲美摄影大片的自然图像,却在柱状图、函数图这类结构化图像上频频出错,要么逻辑混乱、数据错误,要么就是标签错位。
既然后训练这么重要,那么作为初学者,应该掌握哪些知识?大家不妨看看这篇博客《Post-training 101》,可以很好的入门 LLM 后训练相关知识。从对下一个 token 预测过渡到指令跟随; 监督微调(SFT) 基本原理,包括数据集构建与损失函数设计;
风雨飘摇中的Meta,于昨天发布了一篇重量级论文,提出了一种被称作「早期经验」(Early Experience)的全新范式,让AI智能体「无师自通」,为突破强化学习瓶颈提供了一种新思路。
当大语言模型生成海量数据时,数据存储的难题也随之而来。对此,华盛顿大学(UW)SyFI实验室的研究者们提出了一个创新的解决方案:LLMc,即利用大型语言模型自身进行无损文本压缩的引擎。
传统DFT计算太慢?SurFF来了!这个基础模型通过晶面生成、快速弛豫和Wulff构型,精准评估晶面可合成性与暴露度。SurFF相较于DFT实现了10⁵倍的加速,多源实验与文献验证一致率达73.1%。
昨天,State of AI Report 2025 正式发布了。背后主笔是硅谷投资人 Nathan Benaich 和他创办的 Air Street Capital,从 2018 年开始,这份报告就被称为“AI 行业的年度百科”。
全球首个真实世界具身多模态数据集,它来了! 刚刚,它石智航发布全球首个大规模真实世界具身VLTA(Vision-Language-Tactile-Action)多模态数据集World In Your Hands(WIYH)。
大模型安全的bug居然这么好踩??250份恶意文档就能给LLM搞小动作,不管模型大小,600M还是13B,中招率几乎没差。这是Claude母公司Anthropic最新的研究成果。
来自斯坦福大学、SambaNova Systems公司和加州大学伯克利分校的研究人员,在新论文中证明:依靠上下文工程,无需调整任何权重,模型也能不断变聪明。他们提出的方法名为智能体上下文工程ACE。
AI Agent已逐渐从科幻走进现实!不仅能够执行编写代码、调用工具、进行多轮对话等复杂任务,甚至还可以进行端到端的软件开发,已经在金融、游戏、软件开发等诸多领域落地应用。
为了打破这一僵局,来自佐治亚理工学院、明尼苏达大学和哈佛大学的研究团队将目光从单纯的「成功」转向了「成功且高效」。他们推出了名为 ReCA 的集成加速框架,针对多机协作具身系统,通过软硬件协同设计跨层次优化,旨在保证不影响任务成功率的前提下,提升实时性能和系统效率,为具身智能落地奠定基础。
Mila 和微软研究院等多家机构的一个联合研究团队却另辟蹊径,提出了一个不同的问题:如果环境从一开始就不会造成计算量的二次级增长呢?他们提出了一种新的范式,其中策略会在基于一个固定大小的状态上进行推理。他们将这样的策略命名为马尔可夫式思考机(Markovian Thinker)。
调模型不如“管上下文”。这篇文章基于 ACE(Agentic Context Engineering),把系统提示、运行记忆和证据做成可演化的 playbook,用“生成—反思—策展”三角色加差分更新,规避简化偏置与上下文塌缩。在 AppWorld 与金融基准上,ACE 相较强基线平均提升约 +10.6% 与 +8.6%,适配时延降至约 1/6(-86.9%),且在无标注监督场景依然有效。
本研究由新加坡国立大学 ShowLab 团队主导完成。 共一作者 Yanzhe Chen 陈彦哲(博士生)与 Kevin Qinghong Lin 林庆泓(博士生)均来自 ShowLab@NUS,分别聚焦于多模态理解以及智能体(Agent)研究。 项目负责人为新加坡国立大学校长青年助理教授 Mike Zheng Shou 寿政。
我们正式推出第三代重排器 Jina Reranker v3。它在多项多语言检索基准上刷新了当前最佳表现(SOTA)。这是一款仅有 6 亿参数的多语言重排模型。我们为其设计了名为 “last but not late” (中文我们译作后发先至)的全新交互机制,使其能接受 Listwise 即列式输入,在一个上下文窗口内一次性完成对查询和所有文档的深度交互。
来自加拿大蒙特利尔三星先进技术研究所(SAIT)的高级 AI 研究员 Alexia Jolicoeur-Martineau 介绍了微型递归模型(TRM)。这个 TRM 有多离谱呢?一个仅包含 700 万个参数(比 HRM 还要小 4 倍)的网络,在某些最困难的推理基准测试中,
本次新研究是迄今为止规模最大的大模型数据投毒调查。Anthropic 与英国人工智能安全研究所(UK AI Security Institute)和艾伦・图灵研究所(Alan Turing Institute)联合进行的一项研究彻底打破了这一传统观念:只需 250 份恶意文档就可能在大型语言模型中制造出「后门」漏洞,且这一结论与模型规模或训练数据量无关。
Meta 超级智能实验室、伦敦大学学院、Mila、Anthropic 等机构的研究者进行了探索。从抽象层面来看,他们将 LLM 视为其「思维」的改进操作符,实现一系列可能的策略。研究者探究了一种推理方法家族 —— 并行 - 蒸馏 - 精炼(Parallel-Distill-Refine, PDR),
来自加州大学圣地亚哥分校(UCSD)的华人学者Wanda Hou,与加州大学伯克利分校以及Google Quantum AI合作,在谷歌的Sycamore与Willow超导量子处理器上完成了一次别开生面的实验。