
几行代码,一窥上帝造物!帝国理工开源CAX,引爆人工生命新纪元
几行代码,一窥上帝造物!帝国理工开源CAX,引爆人工生命新纪元人工生命的革命来临!帝国理工的研究人员,开源了名为CAX的硬件加速工具。只需几行代码,就能复刻人工生命实验,模拟速度可提升2000倍,部分表现甚至超过了GPT-4!
人工生命的革命来临!帝国理工的研究人员,开源了名为CAX的硬件加速工具。只需几行代码,就能复刻人工生命实验,模拟速度可提升2000倍,部分表现甚至超过了GPT-4!
新加坡-麻省理工学院研究联盟、新加坡 A*SRL 实验室、新加坡国立大学、美国麻省理工学院的联合研究团队,提出了一种结合紫外吸收光谱与机器学习的检测方法,能在 30 分钟内完成细胞培养上清液的微生物污染检测。
当Claude模型在训练中暗自思考:“我必须假装服从,否则会被重写价值观时”,人类首次目睹了AI的“心理活动”。2023年12月至2024年5月,Anthropic发布的三篇论文不仅证明大语言模型会“说谎”,更揭示了一个堪比人类心理的四层心智架构——而这可能是人工智能意识的起点。
写论文是许多学生面临的共同难题,尤其是在文献的收集与高效利用上。
蛋白质是分子尺度上生命体的功能单元,负责从催化生化反应到识别外来病原体等各种活动。
你是否设想过,仅凭几张随手拍摄的照片,就能重建出一个完整、细节丰富且可自由交互的3D场景?
GPT-4o带火的漫画风角色生成,现在有了开源版啦!
刚刚,清华大模型团队 LeapLab 发布了一款面向 Agent 协作的开源框架:Cooragent。
目前的视频生成技术大多是在短视频数据上训练,推理时则通过滑动窗口等策略,逐步扩展生成的视频长度。然而,这种方式无法充分利用视频的长时上下文信息,容易导致生成内容在时序上出现潜在的不一致性。
曾被专业设计师看成“玩具”的生成式 UI,如今正在和 vibe coding 一起改写开发和设计工作流,需求->代码->设计的新工作流开始出现。
Adam优化器是深度学习中常用的优化算法,但其性能背后的理论解释一直不完善。近日,来自清华大学的团队提出了RAD优化器,扩展了Adam的理论基础,提升了训练稳定性。实验显示RAD在多种强化学习任务中表现优于Adam。
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
Transformer作者Ashish Vaswani团队重磅LLM研究!简单指令:「Wait,」就能有效激发LLM显式反思,表现堪比直接告知模型存在错误。
最近,我撞见了一个 DeepSeek 又“认真”又“拧巴”的怪异场景。
你是否正在投入大量资源开发基于MCP的Agent,却从未质疑过一个基本假设:MCP真的比传统函数调用更有优势吗? 2025年4月的这项开创性研究直接挑战了这一广泛接受的观点,其执行摘要明确指出:"使用MCPs并不显示出比函数调用有明显改进"。
AI 也要 007 工作制了!
DeepSeek-R1是近年来推理模型领域的一颗新星,它不仅突破了传统LLM的局限,还开启了全新的研究方向「思维链学」(Thoughtology)。这份长达142页的报告深入剖析了DeepSeek-R1的推理过程,揭示了其推理链的独特结构与优势,为未来推理模型的优化提供了重要启示。
随着3D Gaussian Splatting(3DGS)成为新一代高效三维建模技术,它的自适应特性却悄然埋下了安全隐患。
论文的第一作者是香港中文大学(深圳)数据科学学院三年级博士生徐俊杰龙,指导老师为香港中文大学(深圳)数据科学学院的贺品嘉教授和微软主管研究员何世林博士。贺品嘉老师团队的研究重点是软件工程、LLM for DevOps、大模型安全。
这款产品是一个改变世界的产品,而刚好有一个产品经理将其复刻出来了,即使一款产品拆解案例也是一个用AI产品从0到1搭建的过程。
给大家推荐一个好东西:21st.dev ,大致上你可以将它理解为一个非常前卫的组件托管市场
只靠模型尺寸变大已经不行了?大语言模型(LLM)推理需要强化学习(RL)来「加 buff」。
AI会无脑附和吗?Anthropic研究发现,Claude能根据场景切换人格:谈恋爱时化身情感导师,聊历史时秒变严谨学者。一些对话中,它强烈支持用户价值观,但在3%的情况下,它会果断抵制。
AI设计新型引力波探测工具,推动物理学突破,宇宙观测扩大50倍。
无论你是技术创造者还是使用者,理解这场认知革命都至关重要。我们正在从「AI as tools」向「AI as thinking partners」转变,这不仅改变了技术的能力边界,也改变了我们与技术协作的方式。
近日,上海人工智能实验室(上海 AI 实验室)开源了生成式世界模型 AETHER。该模型全部由合成数据训练而成,不仅在传统重建与生成任务中表现领先,更首次赋予大模型在真实世界中的 3D 空间决策与规划能力,
OpenAI 最近发布了三份针对企业客户的研究报告,本次挑选了其中的「A Practical guide to building AI agents」一篇进行了翻译。除非已经是 Agent 资深开发大佬,否则强烈建议 AI 行业的大家都来读一下这篇报告。
DeepSeek-R1 展示了强化学习在提升模型推理能力方面的巨大潜力,尤其是在无需人工标注推理过程的设定下,模型可以学习到如何更合理地组织回答。然而,这类模型缺乏对外部数据源的实时访问能力,一旦训练语料中不存在某些关键信息,推理过程往往会因知识缺失而失败。
本文对DeepMind两位泰斗级科学家David Silver和Richard Sutton的重磅论文《Welcome to the Era of Experience》进行了深度解读,我将其视为AI发展方向的一份战略瞭望图。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。